Interval Methods for Rigorous Investigations of periodic orbits

نویسنده

  • Zbigniew Galias
چکیده

In this paper, we investigate the possibility of using interval arithmetic for rigorous investigations of periodic orbits in discrete-time dynamical systems with special emphasis on chaotic systems. We show that methods based on interval arithmetic when implemented properly are capable of finding all period-n cycles for considerable large n. We compare several interval methods for finding periodic orbits. We consider the interval Newton method and methods based on the Krawczyk operator and the Hansen–Sengupta operator. We also test the global versions of these three methods. We propose algorithms for computation of the invariant part and nonwandering part of a given set and for computation of the basin of attraction of stable periodic orbits, which allow reducing greatly the search space for periodic orbits. As examples we consider two-dimensional chaotic discrete-time dynamical systems, defined by the Hénon map and the Ikeda map, with the “standard” parameter values for which the chaotic behavior is observed. For both maps using the algorithms presented in this paper, we find very good approximation of the invariant part and the nonwandering part of the region enclosing the chaotic attractor observed numerically. For the Hénon map we find all cycles with period n ≤ 30 belonging to the trapping region. For the Ikeda map we find the basin of attraction of the stable fixed point and all periodic orbits with period n ≤ 15. For both systems using the number of short cycles, we estimate its topological entropy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rigorous Investigations of Periodic Orbits in an Electronic Circuit by Means of Interval Methods

In this paper we use the combination of the global interval Newton method and the method of close returns for detection and proving the existence of periodic orbits in a continuous–time chaotic dynamical system. We consider a simple third order electronic circuit for which we prove the existence of several unstable periodic orbits. We also find out which of these periodic orbits are symmetric a...

متن کامل

Numerical Computations and Computer Assisted Proofs of Periodic Orbits of the Kuramoto-Sivashinsky Equation

We present numerical results and computer assisted proofs of the existence of periodic orbits for the Kuramoto-Sivashinky equation. These two results are based on writing down the existence of periodic orbits as zeros of functionals. This leads to the use of Newton’s algorithm for the numerical computation of the solutions and, with some a posteriori analysis in combination with rigorous interv...

متن کامل

A topological method for rigorously computing periodic orbits using Fourier modes

We present a technique for the rigorous computation of periodic orbits in certain ordinary differential equations. The method combines set oriented numerical techniques for the computation of invariant sets in dynamical systems with topological index arguments. It not only allows for the proof of existence of periodic orbits but also for a precise (and rigorous) approximation of these. As an ex...

متن کامل

A database of rigorous and high-precision periodic orbits of the Lorenz model

A benchmark database of very high-precision numerical and validated initial conditions of periodic orbits for the Lorenz model is presented. This database is a “computational challenge” and it provides the initial conditions of all periodic orbits of the Lorenz model up to multiplicity 10 and guarantees their existence via computer-assisted proofs methods. The orbits are computed using high-pre...

متن کامل

Validated Study of the Existence of Short Cycles for Chaotic Systems Using Symbolic Dynamics and Interval Tools

We show that, for a certain class of systems, the problem of establishing the existence of periodic orbits can be successfully studied by means of a symbolic dynamics approach combined with interval methods. Symbolic dynamics is used to find approximate positions of periodic points, and the existence of periodic orbits in a neighborhood of these approximations is proved using an interval operat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • I. J. Bifurcation and Chaos

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2001